

Hedging, pricing & fundamental analysis

Presented by Catherine Markey Head of Education and Marketing 4 December 2012, Hong Kong

Course Content

- Introduction to hedging why do companies hedge?
- Case study 1: a metal producer hedge with futures
- Case study 2: a car manufacturer hedge with LMEswaps
- Case study 3: a drinks company hedge with futures
- Case study 4: a zinc smelter hedge with options
- Fundamental analysis of metal prices what drives prices and why is the price important?
- Emerging economies

RISK = (PROBABILITY OF AN EVENT OCCURING) X (IMPACT OF EVENT OCCURING)

When did you price your LME Copper? LME Copper cash sellers price January 2008– July 2012

When did you price your LME Nickel?

LME Nickel cash sellers price January 2006 – July 2012

Volatility is inherent in commodity markets

Inflexibility of supply:

- Economies of scale
- High fixed costs
- Development lead times

Inflexibility of demand:

- Lack of substitutes
- Sensitive to business cycle

Large price swings needed to force capacity offline during a surplus, and bring it back online during a shortage

What is hedging?

Hedging

Establishing a position in a commodity futures market (LME) which is equal and opposite to a risk on a physical market.

- Protects against adverse price movements
- Locks in an agreed profit margin
- Protects inventory value

Hedger vs speculator

- A *hedger* starts *with* a price exposure, buys or sells futures contracts, and therefore offsets the price exposure.
- A *speculator* starts *without* price exposure, buys or sells futures contracts, and takes on price exposure

Short hedge

Short hedge

- Used to protect inventory value or sale at an unknown price
- A decline in prices generates profits in the futures market, which are offset by depreciation in the value of the physical inventory
- The opposite happens when prices rise

Strategic short hedge

Case study 1: a nickel producer

Strategic short hedge example

- **Strategic hedge** taking advantage of favourable prices
- Producers can sell forward production and lock in known price when prices are historically high e.g. nickel 2007
- Consumers can lock in raw material costs when prices are historically low e.g. copper early 2009

Strategic short hedge example ABC nickel producer Ltd

21

Strategic short hedge example ABC nickel producer Ltd

It is 7th May 2007 and the producer receives a purchase order for metal to be delivered in fifteen months

Quantity600 tonnesDelivery date7th Aug 2008Sales pricing basisUnknown LME settlementPrice (day of delivery)price (day of delivery)Current (known) 7th August price\$42,100-42,150 per tonneABC's risk?Aims and Action?

Strategic short hedge example		
LME	Physical	
<u>7th May 2007</u>	<u> Produce metal = long physical</u>	
Sell 100 lots LME Nickel futures prompt 7 th Aug 2008 @ \$42,100mt	Sell 600mt Ni @ Unknown Sett priced basis and delivery in 15 months (7 th Aug 2008)	
23	LONDON METAL EXCHANGE	

Price fix	hed	lge	example
ABC nickel pr	oduc	er Lt	d

5th August 2008 – Scenario 1 (falling market price)

LME settlement price

\$18,730 per tonne

Price fix hedge example		
LME	Physical	
<u>7th May 2007</u> Sell 100 lots LME Nickel futures prompt 7 th Aug 2008 @ \$42,100mt	<u>Produce Metal = Long Physical</u>	
<u>5th Aug 2008</u> Buy back 100 lots Close 2 nd Ring Cash LME Nickel @ \$18,730mt		
7th Aug 2008 LME contracts settleRealized LME profit =\$23,370mt	7th Aug 2008 Sell 600mt Nickel to converter @ \$18,730mt Total revenue from sale = \$18,730 + \$23,370 = \$42,100mt	

Long hedge

Long hedge Purchase of futures contracts by a firm worried about rising prices

- Used to protect against price increases in the future
- Offers the chance to lock in profits (if income from operations can be maintained)

Hedging with LMEswaps

Average Pricing

LME Aluminium settlement price Nov 2010

Hedging with LMEswaps

Typical pricing formula:

- **M–1** (pricing month before month of shipment)
- **M** (pricing month of shipment)
- **M+1** (pricing month after month of shipment)

LMEswaps

- Financially settled two-part futures contract
- Buy/sell fixed price for floating price

LMEswaps

- Buyer of LMEswap fixes the purchase price and closes this purchase at the MASP. Cash difference is paid the second business day of the next month
- Seller fixes the sale price and closes this sale at the MASP. Cash difference is paid the second business day of the next month

Case study 2: a car manufacturer hedge with LMEswaps

Average price hedging Scenario – BAT automobile company

November

An automobile manufacturer has published the sales price for a car. It has not been able to negotiate a fixed price for that period for the monthly purchases of aluminium alloy parts for that car; the contract will be priced on the unknown January MASP (monthly average settlement price).

BAT's budget is based on the *current* market price of LME Aluminium Alloy and it needs to ensure that the volatile price of raw material does not impact on its profit and loss for the period.

What action does the company have to take?

Quantity	300 tonnes of LME Aluminium Alloy (AA)
Period	January
Current Jan price	\$2010 per tonne

Hedge using LMEswaps

- Aluminium alloy (AA) LMEswap quote for January is \$2000 \$2010 per tonne
- BAT agrees to buy at the fixed price of \$2010 per tonne and settle this financially at the Monthly Average Settlement Price (MASP) on the last business day of January
- If the price settles higher than \$2010, BAT receives the difference. If the price settles lower than \$2010 BAT pays the difference.

Car manufacturer

BAT automobile co.

LME		Physical	
<u>Nov</u> Buy 10 lots January AA LMEs \$2010mt	swap @		
<u>31 Jan</u> Settlement for difference between fixed price \$2010mt and floating MASP		<u>31 Jan</u> Buy 250mt March AA requirement basi \$2100m1	
\$2100mt <u>2 Feb</u> Receive cash settlement \$90mt		Total purchase price = \$2100 - \$90 =	\$2,010mt
38			DON METAL EXCHANGE

Case study 3: a drinks company hedge with futures

Case study 3: a drinks company

February

 It is February. A consumer of aluminium cans has agreed to buy material with an aluminium coil content of 250mt basis LME settlement price for 18 November.

The consumer wishes to eliminate risk from any movement in price. The current 18 Nov forward price is:

Current LME prices	LME Aluminium	
18 November Buyer	2215	
18 November Seller	2225	

If the price of the cans rises, they cannot pass any increase on.

Drinks company Answer	
LME	Physical
Feb Buy 10 lots (250 tonnes) Al 18 Nov @ \$225mt	
41	LONDON METAL EXCHANGE

Answer

16 November LME settlement price

	Aluminium
November Buyer	3,300
November Seller	3,310

Answer

LME		Physical		
<u>Feb</u> Buy 10 lots (250 tonnes) Al 18	3 Nov @ \$2,225mt			
<u>16 Nov</u> Sell 10 lots Al Cash at	\$3,310mt	<u>16 Nov</u> Buy 250mt material basis L Settlement price of	.ME Al \$3,310mt	
Nominal LME profit =	\$1,085mt	Total buy price = \$3,310- \$1,085 =	\$2,225mt	
42			ON METAL EXCHANGE	

Answer

16 November LME settlement price

	Aluminium
November Buyer	1,300
November Seller	1,310

Answer

LME		Physical		
Feb Buy 10 lots (250 tonnes) Al 18	8 Nov @ \$2,225mt			
<u>16 Nov</u> Sell 10 lots Al Cash at	\$1,310mt	<u>16 Nov</u> Buy 250mt materia Settlement price o	al basis LM f	E Al \$1,310mt
Nominal LME loss =	\$915mt	Total buy price = \$1,310 + \$915 =		\$2,225mt
45				METAL EXCHANGE

Case study 4: a zinc smelter hedge with options

Case study 4: a smelter hedge using options

December 2012

- The forward price for zinc is \$1800 for 2013. A zinc smelter has agreed to sell zinc at the unknown LME price for 2013
- Prices are low but the smelter does not want to risk selling at an even lower price
- Buying a put is one solution

Current 2013 put prices	LME Zinc
Strike 1800	120
Strike 1750	95

Selling an option

Another major reason for selling options, is to reduce the cost of buying other options, assuming that this option purchase is the primary hedge objective

The MinMax

Maybe suitable for both hedge buyers and sellers

The MinMax strategy (risk reversal, collar, fence)

The consumer MinMax

Buys calls and sells puts

Setting a maximum price that can be paid but limiting any downside participation

The producer MinMax

Buys puts and sells calls

Setting a minimum hedge sale price but limiting any upside price participation

Producer MinMax

The MAX. Producer sells **outof-the-money** call at \$1900

They will sell at market within this band

The MIN. Producer buys **outof-the-money** puts at \$1700

MinMax

Variations and variables

Zero-cost is the norm but not essential

Ratio does not have to be 1:1

Return for zinc smelter is no lower than \$1700 and no higher than \$1900

Fundamental analysis of the industrial metals

Introduction

Define a metal

- How are they made?
- Where are they from?
- Where are they used?
- Why is the price important?

PEST analysis

PEST - Political, Economic, Social & Technological factors of the macroenvironment.

POLITICAL ANALYSIS	ECONOMIC ANALYSIS
• Trade restrictions and tariffs (arbitrage).	Economic growth rate
Political stability (Middle East, Nigeria)	• Exchange rates, Inflation rate, Interest rates etc
Anti-trust laws	• Business cycle stage (prosperity, recession,
Environmental regulations	recovery)
• Employment laws (cheap labour)	Labour costs
• Tax policy	• Government intervention in the free market
SOCIAL ANALYSIS	TECHNOLOGICAL ANALYSIS
• Demographics	Research & Development Activity
Population growth rate	Rate of technological change
Class structure	Impact of technology on products
Education	Impact on cost structure
• Emphasis on environment, safety & health.	Impact on value chain structure

Collating raw data

Key Economic Data

- GDP/IP including sector IPs (construction, engineering, auto, transport)
- Government & private sector spending e.g. fixed asset investment
- Purchasing Managers Index (PMI)
- Unemployment & household disposable incomes
- Inflation rates, interest rates and exchange rates
- Other e.g. money supply, fiscal policy, economic stimulus packages

Demand Forecasting

Market modelling - forecasting

- Econometrics and quantitative techniques such as correlations and regressions
- Analyst's gut instinct & knowledge of industry trends through experience and new information assimilated may lead to different forecasts
- Analyst will also consider current market forces at play in Porter's Analysis and/or relevant 'PEST' issues.
- A forecast is not a mere prediction!

Top down approach - macroeconomics

- Effect of IP/GDP growth on demand
- Consumption by end use sector
 - Vehicle production
 - Housing
- Effect of inventory changes

US, Europe and China GDP

2012 forecasts: China 8.1% growth, US 2.1% growth, EU 0.5% decline

Metals end-use consumption by sector

Copper

Aluminium

Source: CRU

US auto production & construction

US recessions highlighted in grey

- Vehicle production decreased approximately 50% through 2008, but has seen improvement in recent months
- US Housing starts have stabilised through 2009.

Source: Federal Reserve

Demand forecasting – bottom up approach

- Production data for the end-uses of the product will be summed up to find the total demand for the product.
- **Example 1:** Demand for semi-finished product
 - = Production of finished products/ Product yield
- **Example 2:** Steel plate demand from shipbuilding
 - = Number of ships X Steel plate used per ship

Interpretation of stocks data

Examples: interpretation of stocks data

- LME stocks + LME cancelled stocks
- Other exchanges' stocks e.g. Shanghai, Comex
- Producer, country, commercial stocks
- Unreported stocks

- Recession band highlighted in grey (US recessions, NBER).
- Demand in recession decreases hence stocks increase.

Source: WBMS

Nickel stocks and price trend

69

Other prices drivers

- Freight
- Regulation
- Stimulus packages

Production forecasting

Market modelling – production forecasting

- Following factors must be considered:
 - New capacity
 - Unplanned stoppages e.g. strikes, breakdowns, raw material shortages, disasters, wars etc
 - Supply cutbacks as a result of lacklustre demand
 - The cost curve i.e. is the cost of production below the sale price?
 - Any capacity closures
- Production forecasts will also be influenced by the implied net trade balance i.e. whether the analyst thinks the country will be a net importer or net exporter.

72
Forecasting prices

Market modelling – forecasting prices

- So what determines the price?
- Simply put, it's the ability of the market to satisfy demand:
 - If demand rises faster than production, prices are likely to increase.
 - If production rises faster than demand prices are likely to fall.
 - When both demand and production are falling, the one that is falling faster is likely to determine the direction of the prices.
 - When forecasting prices analysts will follow the changes in supply/demand while considering the cost curve.
- Seasonal patterns are also factored into the forecasts.

٠

Emerging economies

Emerging economies

Overview

- What is an emerging economy / BRICS countries?
- BRICS background
- How can GDP data give us an insight into the past, present and future of developing economies?
- Consumerism and infrastructure
- Case study: Aluminium

Emerging economies

Source: Black Coffee Project

<u>BRIC</u> Brazil Russia India China

+ South Africa = BRICS

- developing countries
- large populations/ land mass
- key consumers/ producers
- drivers of commodity prices
- BRICS countries are KEY consumers and/or producers of industrial metals

BRICS GDP

 China has the second largest GDP (PPP) after the US; since 2002 increase in GDP has been between 10% and 17.4% y-o-y

 Don't forget the e-bikes! - estimates of 120 million in 2010, with 40 million annual production

China completely dominates consumption...

Regional refined metals consumption growth, 2007-12 '000 tonnes Source CRU

...and is expected to continue to do so

Regional refined metals consumption growth, 2012-17 '000 tonnes Source: CRU

Case study: China and aluminium

Bauxite to aluminium

Bauxite

Ore

Aluminium chassis

Aluminium ingot

RUSAL aluminium smelter

BRICS aluminium consumption: THE FUTURE

2011 = 20.8 mil tonnes; 2016e = 26.9 mil tonnes Next 5 years an extra **6 mil tonnes** of metal required

93

Conclusions

- BRICS countries have all shown unprecedented increases in GDP over the last 10 yrs
- Demand for industrial metals due to growth in middle classes and largescale construction and consumerism - but with room to grow.
- How much can we rely on China and the emerging economies? Is china slowing? Can it secure its raw materials and energy?
- What other factors should be considered and why? Eg. inflation, currencies, rising food prices....

Disclaimer

The information contained within this presentation is for illustrative and educational purposes only and should not be relied upon in making any investment decision. Whilst every effort has been made to ensure the information is up-to-date and correct, the LME cannot guarantee that it is completely accurate and free from human error.

